Zurich Zurich

Quantum Effects in Memristive Devices — The MEMQuD Project

Zurich Zurich

Insider Brief:

  • INRiM researchers, in collaboration with several international universities and research institutes, believe memrisistors are promising devices for the realization of new computational architectures emulating functions of a human’s brain, allowing the creation of increasingly efficient computation systems suitable for the development of the entire artificial intelligence sector.
  • The EMPIR MEMQuD project, coordinated by INRiM, aims to study the quantum effects in such devices in which the electronic conduction properties can be manipulated allowing the observation of quantized conductivity phenomena at room temperature.

RESEARCH NEWS — Turin, Italy/September 26, 2022 — At the nanoscale, the laws of classical physics suddenly become inadequate to explain the behavior of matter. It is precisely at this juncture that quantum theory comes into play, effectively describing the physical phenomena characteristic of the atomic and subatomic world. Thanks to the different behavior of matter on these length and energy scales, it is possible to develop new materials, devices and technologies based on quantum effects. A real quantum revolution that promises to innovate areas such as cryptography, telecommunications and computation.

The physics of very small objects, already at the basis of many technologies that we use today without realizing it, is intrinsically linked to the world of nanotechnologies, the branch of applied science dealing with the control of matter at the nanometer scale (a nanometer is one billionth of a meter). This control of the matter at the nanoscale is at the basis of the development of new electronic devices.

Among these, memristors are considered promising devices for the realization of new computational architectures emulating functions of our brain, allowing the creation of increasingly efficient computation systems suitable for the development of the entire artificial intelligence sector, as recently shown by INRiM researchers in collaboration with several international universities and research institutes [1,2].

In this context, the EMPIR MEMQuD project, coordinated by INRiM, aims to study the quantum effects in such devices in which the electronic conduction properties can be manipulated allowing the observation of quantized conductivity phenomena at room temperature. In addition to analyzing the fundamentals and recent developments, the review work “Quantum Conductance in Memristive Devices: Fundamentals, Developments, and Applications” recently published in the prestigious international journal Advanced Materials (https://doi.org/10.1002/adma.202201248) analyzes how these effects can be used for a wide range of applications, from metrology to the development of next-generation memories and artificial intelligence.

Responsive Image

###

[1] Milano, Gianluca, et al. “In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks” Nature Materials 21.2 (2022): 195–202.

[2] Milano, Gianluca, et al. “Brain‐inspired structural plasticity through reweighting and rewiring in multi‐terminal self‐organizing memristive nanowire networks” Advanced Intelligent Systems 2.8 (2020): 2000096.

If you found this article to be informative, you can explore more current quantum news here, exclusives, interviews, and podcasts.

SOURCE: INRIM — ISTITUTO NAZIONALE DI RICERCA METROLOGICA

James Dargan

James Dargan is a writer and researcher at The Quantum Insider. His focus is on the QC startup ecosystem and he writes articles on the space that have a tone accessible to the average reader.

Share this article:

Keep track of everything going on in the Quantum Technology Market.

In one place.

Related Articles

Join Our Newsletter