Zurich Zurich

Metasurface Technology Offers a Compact Way to Generate Multiphoton Entanglement

Quantum Source Quantum Source

Insider Brief

  • Researchers developed a new method for generating multiphoton entanglement using metasurfaces, as reported in Advanced Photonics Nexus.
  • Their approach relies on a gradient metasurface to induce quantum interference among multiple single photons, simplifying entanglement generation while improving efficiency.
  • This technique could enable compact quantum devices, facilitate quantum networks, and contribute to the development of quantum computers small enough to fit on a laptop.

PRESS RELEASE — Quantum information processing is a field that relies on the entanglement of multiple photons to process vast amounts of information. However, creating multiphoton entanglement is a challenging task. Traditional methods either use quantum nonlinear optical processes, which are inefficient for large numbers of photons, or linear beam-splitting and quantum interference, which require complex setups prone to issues like loss and crosstalk.

A team of researchers from Peking University, Southern University of Science and Technology, and the University of Science and Technology of China recently made a significant breakthrough in this area. As reported in Advanced Photonics Nexus, they developed a new approach using metasurfaces, which are planar structures capable of controlling various aspects of light, such as phase, frequency, and polarization. This innovative approach allows for the generation of multiphoton entanglement on a single metasurface, simplifying the process while making it more efficient.

The researchers’ method involves sending several single photons into a specially designed gradient metasurface from different directions. The metasurface causes these photons to interfere with each other in a quantum manner, resulting in entangled photons. This technique not only allows for the creation of different types of entangled states but also enables the fusion of several pairs of entangled photons into larger groups. This advancement means that more quantum information can be packed into a smaller space.

Responsive Image

Professor Ying Gu, corresponding author on the report, remarks on this new approach as a fresh perspective for quantum information processing: “It’s like finding a shortcut in a maze. Instead of trying to navigate the twists and turns of complex optical setups, we can use a single metasurface to do the job. The process of creating and manipulating entangled photons becomes much simpler and more compact. It’s perfect for building tiny quantum devices that could fit on a chip, making it a great solution for future quantum computing and communication applications.”

With this new method of creating multiphoton entanglement, many quantum applications may become more accessible. For instance, metasurfaces could be used to generate and deliver entangled photons to multiple users, facilitating the creation of a quantum network. Additionally, metasurfaces could serve as building blocks for handling more photons, potentially leading to the development of quantum computers as small as laptops. Such possibilities are exciting, and this research moves us a step closer to realizing them.

For details, see the original Gold Open Access article by Q. Liu et al., “Multiphoton path-polarization entanglement through a single gradient metasurface,” Adv. Photon. Nexus 4(2), 026002 (2025), doi: 10.1117/1.APN.4.2.026002

Matt Swayne

With a several-decades long background in journalism and communications, Matt Swayne has worked as a science communicator for an R1 university for more than 12 years, specializing in translating high tech and deep tech for the general audience. He has served as a writer, editor and analyst at The Quantum Insider since its inception. In addition to his service as a science communicator, Matt also develops courses to improve the media and communications skills of scientists and has taught courses. [email protected]

Share this article:

Keep track of everything going on in the Quantum Technology Market.

In one place.

Related Articles

Join Our Newsletter