Cookie Consent by Free Privacy Policy Generator
Search
Close this search box.

Mass-Producible Miniature Quantum Memory

optical memory

Insider Brief

  • A team of researchers at the University of Basel has developed such a memory element that can be mass produced.
  • Like like classical networks, quantum networks require memory elements in which information can be temporarily stored and routed as needed
  • Results were recently published in the scientific journal Physical Review Letters.
  • Image: Light pulses can be stored and retrieved in the glass cell, which is filled with rubidium atoms and is only a few millimeters in size. (University of Basel, Department of Physics/Scixel)

PRESS RELEASE — It is hard to imagine our lives without networks such as the internet or mobile phone networks. In the future, similar networks are planned for quantum technologies that will enable the tap-proof transmission of messages using quantum cryptography and make it possible to connect quantum computers to each other.

Like their conventional counterparts, such quantum networks require memory elements in which information can be temporarily stored and routed as needed. A team of researchers at the University of Basel led by Professor Philipp Treutlein has now developed such a memory element, which can be micro-fabricated and is, therefore, suitable for mass production. Their results were recently published in the scientific journal Physical Review Letters.

Photon storage in glass cells

Light particles are particularly suited to transmitting quantum information. Photons can be used to send quantum information through fiber optic cables, to satellites or into a quantum memory element. There, the quantum mechanical state of the photons has to be stored as precisely as possible and, after a certain time, converted back into photons.

Two years ago, the Basel researchers demonstrated this works well using rubidium atoms in a glass cell.

“However, that glass cell was handmade and several centimeters in size,” says postdoc Dr. Roberto Mottola: “To be suitable for everyday use, such cells need to be smaller and amenable to being produced in large numbers.”

That is precisely what Treutlein and his collaborators have now achieved. To use a much smaller cell measuring only a few millimeters, which they obtained from the mass production of atomic clocks, they needed to develop a few tricks. In order to have a sufficient number of rubidium atoms for quantum storage despite the small size of the cell, they had to heat up the cell to 100 degrees centigrade to increase the vapor pressure.

Moreover, they exposed the atoms to a magnetic field of 1 tesla, more than ten thousand times stronger than Earth’s magnetic field. This shifted the atomic energy levels in a way that facilitated the quantum storage of photons using an additional laser beam. This method allowed the researchers to store photons for around 100 nanoseconds. Free photons would have traveled 30 meters in that time.

A thousand quantum memories on a single wafer

“In this way, we have built, for the first time, a miniature quantum memory for photons of which around 1000 copies can be produced in parallel on a single wafer”, says Treutlein. In the current experiment, storage was demonstrated using strongly attenuated laser pulses, but in the near future, Treutlein, in collaboration with the CSEM in Neuchatel, also wants to store single photons in the miniature cells. Moreover, the format of the glass cells still needs to be optimized, such as to store the photons for as long as possible while preserving their quantum states.

Original publication

Roberto Mottola, Gianni Buser, and Philipp Treutlein
Optical Memory in a Microfabricated Rubidium Vapor Cell
Physical Review Letters (2023), doi: 10.1103/PhysRevLett.131.260801

For more market insights, check out our latest quantum computing news here.

The Future of Materials Discovery: Reducing R&D Costs significantly with GenMat’s AI and Machine Learning Tools

When: July 13, 2023 at 11:30am

What: GenMat Webinar

Picture of Jake Vikoren

Jake Vikoren

Company Speaker

Picture of Deep Prasad

Deep Prasad

Company Speaker

Picture of Araceli Venegas

Araceli Venegas

Company Speaker

Matt Swayne

With a several-decades long background in journalism and communications, Matt Swayne has worked as a science communicator for an R1 university for more than 12 years, specializing in translating high tech and deep tech for the general audience. He has served as a writer, editor and analyst at The Quantum Insider since its inception. In addition to his service as a science communicator, Matt also develops courses to improve the media and communications skills of scientists and has taught courses. [email protected]

Share this article:

Relevant

The Future of Materials Discovery: Reducing R&D Costs significantly with GenMat’s AI and Machine Learning Tools

When: July 13, 2023 at 11:30am

What: GenMat Webinar

Picture of Jake Vikoren

Jake Vikoren

Company Speaker

Picture of Deep Prasad

Deep Prasad

Company Speaker

Picture of Araceli Venegas

Araceli Venegas

Company Speaker

Keep track of everything going on in the Quantum Technology Market.

In one place.

Join Our Newsletter