planqc awarded 29 Million Euro Contract From DLR to Build And Install Scalable Neutral-Atom Quantum Computer

planqc
planqc
Xpanse Xpanse

Insider Brief

  • The German Aerospace Center (DLR) selected planqc  to develop a digital neutral-atom-based quantum computing hardware and software platform.
  • The 100-qubit system will be installed at the DLR Innovation Center in Ulm.
  • This is considered the first sale of a digital quantum computer based on neutral atoms in Europe.
  • Image: planqc

PRESS RELEASE — planqc has been selected by the German Aerospace Center (DLR) to develop a digital neutral-atom-based quantum computing hardware and software platform that is scalable and can demonstrate quantum algorithms for real-world problems. The award is valued at 29 million EUR. planqc teams up with Menlo Systems and ParityQC who will provide critical components for the laser systems, software, and architecture. This is the first sale of a digital quantum computer based on neutral atoms in Europe.

The award comes at a time of impressive growth for the company and follows the appointment of Hermann Hauser as board advisor.

Planqc – Europe’s leader for digital quantum processors based on neutral atoms – has prevailed in a Europe-wide competition and has now been commissioned to build and install a quantum processor using ultracold atoms in optical lattices at the DLR Innovation Center in Ulm (Germany). The system will be scalable and will be integrated into DLR’s quantum computing stack as part of the DLR Quantum Computing Initiative (DLR QCI).

“We are very proud that DLR relies on planqc as the technology leader in the field of neutral atoms to build a quantum computer. This order is an important milestone in our commercialization and growth strategy, which envisages expanding into other key industries and opening up global markets as a next step.” Says Alexander Glätzle, CEO and Co-Founder of planqc. “We are not only excited to install the first quantum computer based on neutral atoms at DLR, but we also want to collaborate closely with DLR experts to run quantum algorithms on it that will have a real impact on DLR’s many fields of application.” Adds Sebastian

Responsive Image

Blatt, CTO and Co-Founder of planqc. Quantum computers are a ground-breaking technology that will in the future allow
calculations and simulations in specific areas of application to be carried out much faster than on classical supercomputers. They can be used, for example, in designing new materials or drugs, or for solving complex problems in transport and energy or the financial sector. Quantum computers use the quantum-mechanical effects of entanglement and superposition: Their quantum bits (qubits) can assume the states 0 and 1 at the same time, and not just one after the other successively, like in classical computers. This is in turn what makes quantum computers so powerful.

The problem areas identified by DLR include quantum materials, quantum machine learning, optimization of satellites, and the simulation of chemical reactions for the development of more efficient battery systems. Through its own research activities, DLR has itself a clear need for the future use of quantum computers in all its priority areas, such as aerospace, energy, transport, security, and digitization.

To kick-start the joint development and to leverage synergies with DLR, planqc will have a dedicated lab and office space at the DLR Innovation Center in Ulm. “Diversity is an important feature of the DLR Quantum Computing Initiative. The QCI pursues different technological approaches to investigate their respective advantages and disadvantages. With this project, we are adding another promising technology to our quantum computer portfolio at the Ulm site,” says Dr. Karla Loida, Hardware Lead for the QCI.

“In order for the neutral atoms to become qubits, they must first be trapped and confined in a vacuum by laser beams,” says Dr. Robert Axmann, Head of the DLR QCI. The atoms are then arranged in a regular manner, similar to eggs in an egg carton, and can be manipulated with lasers.

This is how arrays of qubits are created. “To have two qubits interact with each other, the atoms are excited into so-called Rydberg states. Without an interaction or entanglement between qubits, quantum computers do not work,” says Axmann.

The start-up planqc was founded in April 2022 in Garching near Munich (Germany). The founding team builds on decades of groundbreaking research and technology development at Munich’s Max Planck Institute of Quantum Optics (MPQ). Using optical lattices, a technology pioneered in Munich, already today thousands of atoms can be trapped in a standing wave light pattern formed by a single laser beam. Quantum information is stored in electronic states of strontium atoms, the very same states that are used to build the world’s best atomic clocks due to their extraordinarily long coherence times. This unique combination of quantum technologies has the potential to be one of the fastest ways to scale to thousands of qubits with superior gate fidelity, a prerequisite for industry-relevant quantum advantage.

For more information visit to www.planqc.eu

For more market insights, check out our latest quantum computing news here.

Matt Swayne

With a several-decades long background in journalism and communications, Matt Swayne has worked as a science communicator for an R1 university for more than 12 years, specializing in translating high tech and deep tech for the general audience. He has served as a writer, editor and analyst at The Quantum Insider since its inception. In addition to his service as a science communicator, Matt also develops courses to improve the media and communications skills of scientists and has taught courses. [email protected]

Share this article:

Keep track of everything going on in the Quantum Technology Market.

In one place.

Related Articles

Join Our Newsletter