Yokohama National University Researchers Investigate Fault-tolerant Quantum Computer Memory in a Diamond

Yokohama National University quantum research
Yokohama National University quantum research
Sentriqs Sentriqs

 

Yokohama National University quantum research
Nitrogen-vacancy (NV) center in diamond serves as quantum memories, which is error-correction coded to correct errors automatically. (Image: Yokohama National University.)

UNIVERSITY NEWS — Quantum computing holds the potential to be a game-changing future technology in fields ranging from chemistry to cryptography to finance to pharmaceuticals. Compared to conventional computers, scientists suggest that quantum computers could operate many thousand times faster. To harness this power, scientists today are looking at ways to construct quantum computer networks. Fault-tolerant quantum memory, that responds well when hardware or software malfunctions occur, will play an important role in these networks. A research team from Yokohama National University is exploring quantum memory that is resilient against operational or environmental errors.

The research team reported their findings on April 27, 2022 in the journal Communications Physics.

For quantum computers to reach their full potential, scientists need to be able to construct quantum networks. In these networks, fault-tolerant quantum memory is essential. When scientists manipulate spin quantum memory, a magnetic field is required. The magnetic field hinders the integration with the superconducting quantum bits, or qubits. The qubits in quantum computing are basic units of information, similar to the binary digits, or bits, in conventional computers.

To scale up a quantum computer based on superconducting qubits, scientists need to operate under a zero magnetic field. In their search to further the technology toward a fault-tolerant quantum computer, the research team studied nitrogen-vacancy centers in diamond. Nitrogen-vacancy centers hold promise in a range of applications including quantum computing. Using a diamond nitrogen-vacancy center with two nuclear spins of the surrounding carbon isotopes, the team demonstrated quantum error correction in quantum memory. They tested a three-qubit quantum error correction against both a bit-flip or phase-flip error, under a zero magnetic field. The bit-flip or phase-flip errors can occur when there are changes in the magnetic field. To achieve a zero magnetic field, the team used a three-dimensional coil to cancel out the residual magnetic field including the geomagnetic field. This quantum memory is error-correction coded to correct errors automatically as they occur.

Responsive Image

Previous research had demonstrated quantum error correction, but it was all carried out under relatively strong magnetic fields. The Yokohama National University research team is the first to demonstrate the quantum operation of the electron and nuclear spins in the absence of a magnetic field.

“The quantum error correction makes quantum memory resilient against operational or environmental errors without the need for magnetic fields and opens a way toward distributed quantum computation and a quantum internet with memory-based quantum interfaces or quantum repeaters,” said Hideo Kosaka, a professor at Yokohama University and lead author on the study.

The team’s demonstration can be applied to the construction of a large-scale distributed quantum computer and a long-haul quantum communication network by connecting quantum systems vulnerable to a magnetic field, such as superconducting qubits with spin-based quantum memories. Looking ahead, the research team has plans to take the technology a step further. “We want to develop a quantum interface between superconducting and photonic qubits to realize an fault-tolerant large-scale quantum computer,” said Kosaka.

The team members are Takaya Nakazato, Raustin Reyes, Nobuaki Imaike, Kazuyasu Matsuda, Kazuya Tsurumoto, from the Department of Physics, Graduate School of Engineering Science, Yokohama National University in Yokohama, Japan; Yuhei Sekiguchi from the Institute of Advanced Science, Yokohama National University; and Hideo Kosaka, who works at both the Graduate School of Engineering Science and the Institute of Advanced Sciences, Yokohama National University.

The research is funded by Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research; Japan Science and Technology Agency Moonshot R&D; JST CREST;  and also the Ministry of Internal Affairs and Communications under the initiative Research and Development for Construction of a Global Quantum Cryptography Network.

Source: EurekAlert

For more market insights, check out our latest quantum computing news here.

Matt Swayne

With a several-decades long background in journalism and communications, Matt Swayne has worked as a science communicator for an R1 university for more than 12 years, specializing in translating high tech and deep tech for the general audience. He has served as a writer, editor and analyst at The Quantum Insider since its inception. In addition to his service as a science communicator, Matt also develops courses to improve the media and communications skills of scientists and has taught courses. [email protected]

Share this article:

Keep track of everything going on in the Quantum Technology Market.

In one place.

Related Articles

Join Our Newsletter