Xanadu-led Researchers to Present Blueprint for Scalable, Fault-tolerant Photonic Quantum Computers

photonic quantum computer
photonic quantum computer

Xanadu-led Researchers to Present Blueprint for Scalable, Fault-tolerant Photonic Quantum Computers

photonic quantum computer
Research team to present plan for scalable, fault-tolerant quantum computer at upcoming APS meeting. (Image: Pixabay/Geralt)

An international team of scientists led by Xanadu’s research team will present a blueprint to a scalable, fault-tolerant photonic quantum computer at the APS March Meeting on March 14. The team suggests this new architecture may offer advantages that will make photonic-based approaches superior to other quantum computing modalities.

According to the abstract, the team reports that the architecture is centered on “Gottesman-Kitaev-Preskill bosonic qubits and squeezed states of light, stitched together into a qubit cluster state with one time and two spatial dimensions.”

The approach generates and manipulates a 3D resource state for fault-tolerant, measurement-based quantum computation by combining state-of-the-art procedures for the preparation of bosonic qubits, according to the researchers. They added that the strengths of continuous-variable quantum computation are performed using easy-to-generate squeezed states.

The team reports on several advantages. Because the integrated photonic chips are modular and easy to network, the design is scalable.

They report: “Moreover, the architecture is based on modular, easy-to-network integrated photonic chips, opening the door to scalable fabrication and operation, which may in turn allow photonics to leap-frog other platforms on the path to a quantum computer with millions of qubits.”

The researchers will also discuss improvements to the stitching component that could improve the odds creating a useful quantum computer.

The team includes Ilan Tzitrin and Eli Bourassa, both of Xanadu; Rafael N Alexander, University of New Mexico; Michael Vasmer, Perimeter Institute for Theoretical Physics — Institute for Quantum Computing; Ashlesha Patil, Saikat Guha, Guillaume Dauphinais, Kirshna Kumar, Sabapathy Daiqin Su and Ish Dhand, all of the University of Arizona; Takaya Matsuura, The University of Tokyo; Ben Q Baragiola and Nicolas Menicucci.

The Ontario Graduate Scholarship, the Lachlan Gilchrist Fellowship, Mitacs and the Ontario Graduate Scholarship supported the work.

The American Physical Society (APS) is a nonprofit membership organization that advances physics through research journals, scientific meetings, and education, outreach, advocacy and international activities. The society represents more than 50,000 members.

Matt Swayne

Matt Swayne

With a several-decades long background in journalism and communications, Matt Swayne has worked as a science communicator for an R1 university for more than 12 years, specializing in translating high tech and deep tech for the general audience. He has served as a writer, editor and analyst at The Quantum Insider since its inception. In addition to his service as a science communicator, Matt also develops courses to improve the media and communications skills of scientists and has taught courses. matt@thequantuminsider.com

Share This Article

The Quantum Insider
Explore our intelligence solutions

Join Our Newsletter