Cookie Consent by Free Privacy Policy Generator
Search
Close this search box.

Superconducting material could make quantum computers super-useful

We know that quantum computers can work. That’s not the problem. The issue is finding materials that make these devices more useful and practical. Now, researchers from Johns Hopkins University report that they are a step closer to creating the building blocks that can do just that, according to a release in Phys.Org.

“We’ve found that a certain superconducting material contains special properties that could be the building blocks for technology of the future,” said Yufan Li, a postdoctoral fellow in physics and astronomy. He is also the study’s first author.

This work addresses the need for quantum bits — or qubits — to be protected by superconductors, which cushion the device’s sensitive components from the “noise” of the environment. However, this becomes difficult because traditional superconductors require a precise external magnetic field be applied on each qubit, the researchers said.

The study probes the weird subatomic world where current can travel clockwise and counterclockwise — at the same time. Li and colleagues said they found that a ring of a compound — called β-Bi2Pd — already naturally exists between two states in the absence of an external magnetic field. This allows current to circulate both clockwise and counterclockwise, simultaneously, through a ring of this material.

Li said, “A ring of β-Bi2Pd already exists in the ideal state and doesn’t require any additional modifications to work. This could be a game changer.”

Responsive Image

The researchers add that the power of qubits to exist in multiple states — superposition — makes them extra powerful for certain types of computation, such as artificial intelligence, drug development, cryptography, financial modeling and weather forecasting.

“A more realistic, tangible implementation of qubit can be a ring made of superconducting material, known as flux qubit, where two states with clockwise- and counterclockwise-flowing electric currents may exist simultaneously,” says Chia-Ling Chien, professor of physics at The Johns Hopkins University and another author on the paper.

The findings were published October 11 in Science.

The Future of Materials Discovery: Reducing R&D Costs significantly with GenMat’s AI and Machine Learning Tools

When: July 13, 2023 at 11:30am

What: GenMat Webinar

Picture of Jake Vikoren

Jake Vikoren

Company Speaker

Picture of Deep Prasad

Deep Prasad

Company Speaker

Picture of Araceli Venegas

Araceli Venegas

Company Speaker

Matt Swayne

With a several-decades long background in journalism and communications, Matt Swayne has worked as a science communicator for an R1 university for more than 12 years, specializing in translating high tech and deep tech for the general audience. He has served as a writer, editor and analyst at The Quantum Insider since its inception. In addition to his service as a science communicator, Matt also develops courses to improve the media and communications skills of scientists and has taught courses. [email protected]

Share this article:

Keep track of everything going on in the Quantum Technology Market.

In one place.

Join Our Newsletter