Cookie Consent by Free Privacy Policy Generator
Search
Close this search box.

Scientists Build a New Qubit Platform Atom-by-Atom

qubit research

Insider Brief

  • Researchers created a novel electron-spin qubit platform, assembled atom-by-atom on a surface.
  • The team successfully demonstrated the ability to control multiple qubits simultaneously, which could enable single-, two-, and three-qubit gates.
  • The paper was published in the journal Science.

PRESS RELEASE — Researchers at the IBS Center for Quantum Nanoscience (QNS) at Ewha Womans University have accomplished a groundbreaking step forward in quantum information science. In partnership with teams from Japan, Spain, and the US, they created a novel electron-spin qubit platform, assembled atom-by-atom on a surface. The paper on the advance was published in the journal Science.

Unlike previous atomic quantum devices on surfaces where only a single qubit could be controlled, the researchers at QNS successfully demonstrated the ability to control multiple qubits simultaneously, enabling the application of single-, two-, and three-qubit gates.

Qubits, the fundamental units of quantum information, are key to quantum applications such as quantum computing, sensing, and communication. Soo-hyon Phark, one of the QNS principal investigators, highlights the significance of this project.

“To date, scientists have only been able to create and control a single qubit on a surface, making this a major step forward towards multi-qubit systems,” he stated.

Led by Yujeong Bae, Phark and director Heinrich Andreas, QNS developed this novel platform, which consists of individual magnetic atoms placed on a pristine surface of a thin insulator. These atoms can be precisely positioned using the tip of a scanning tunneling microscope (STM) and manipulated with the assistance of electron spin resonance (ESR-STM). This atomic-scale control has allowed researchers to manipulate quantum states coherently. They also established the possibility of controlling remote qubits, opening the path to scaling up to tens or hundreds of qubits in a defect-free environment.

Bae pointed out, “It is truly amazing that we can now control the quantum states of multiple individual atoms on surfaces at the same time”. The atomic-scale precision of this platform allows for the remote manipulation of the atoms to perform qubit operations individually, without moving the tip of the STM.

This research marks a significant departure from other qubit platforms, such as photonic devices, ion and atom traps, and superconducting devices. One of the unique benefits of this surface-based electron-spin approach is the myriad of available spin species and the vast variety of two-dimensional geometries that can be precisely assembled.

Looking forward, the researchers anticipate quantum sensing, computation, and simulation protocols using these precisely assembled atomic architectures. Altogether, the work by the QNS researchers is expected to usher in a new era of atomic-scale control in quantum information science, cementing Korea’s position as a global leader in the field.

If you found this article to be informative, you can explore more current quantum news here, exclusives, interviews, and podcasts.

The Future of Materials Discovery: Reducing R&D Costs significantly with GenMat’s AI and Machine Learning Tools

When: July 13, 2023 at 11:30am

What: GenMat Webinar

Picture of Jake Vikoren

Jake Vikoren

Company Speaker

Picture of Deep Prasad

Deep Prasad

Company Speaker

Picture of Araceli Venegas

Araceli Venegas

Company Speaker

Matt Swayne

With a several-decades long background in journalism and communications, Matt Swayne has worked as a science communicator for an R1 university for more than 12 years, specializing in translating high tech and deep tech for the general audience. He has served as a writer, editor and analyst at The Quantum Insider since its inception. In addition to his service as a science communicator, Matt also develops courses to improve the media and communications skills of scientists and has taught courses. [email protected]

Share this article:

Keep track of everything going on in the Quantum Technology Market.

In one place.

Join Our Newsletter