Cookie Consent by Free Privacy Policy Generator
Search
Close this search box.

Could Quantum Theory Help You With Your Basketball Tournament Brackets?

nba

Insider Brief

  • Scientists say a model based on density functional theory can suggest the best positioning for each player on the basketball court.
  • The researchers relied on Nobel Prize-winning methods originally developed to study large collections of quantum mechanically interacting electron.
  • It’s not just basketball, density-functional fluctuation theory could be used to study everything from crowd behavior to social phenomena such as migration and segregation.

PRESS RELEASE — A physics theory that’s proven useful to predict the crowd behavior of molecules and fruit flies also seems to work on another group – NBA players.

A model based on density functional theory can suggest the best positioning for each player on the basketball court in a given scenario if they want to raise their probability of either scoring or defending successfully.

Boris Barron, a doctoral student working with Tomás Arias, professor of physics presented his work on March 9 at the American Physical Society conference in Las Vegas. He used detailed data of player positions from this season’s NBA games to develop his model.

Using the results, Barron is able to:

Responsive Image

  • predict where a particular player may go next;
  • determine which players tend to be in good or bad positions;
  • calculate the probability of success, either offensively or defensively, based on player positioning; and
  • create simulations of how the opposing team will or should respond if a player performs a particular move, such as running across the court.

“We can see precisely where a player should be to help their team, and those few feet can result in as much as a 3% difference (in success),” he said.

“In these high-scoring games, three points out of 100 is a big deal for one player,” said Arias.

The mathematical models that Barron employs are based on Nobel Prize-winning methods originally developed to study large collections of quantum mechanically interacting electrons. The work builds on Arias’ research, which combines mathematical concepts and approaches from density-functional fluctuation theory to study everything from crowd behavior to social phenomena such as migration and segregation.

These methods work when you’re analyzing a game like basketball, Arias said, because the behavior of groups of people is difficult to quantify.

“Our physics techniques come into play because you’re not looking at players individually, but how they are collaborating on the court,” he said. “That’s why you need this higher-level analysis.”

The implications for team sports like basketball are obvious, Barron said. Coaches could input team- or player-specific data for their opponents into this model to develop a strategy to thwart the most common plays.

For additional information, see this Cornell Chronicle story.

For more market insights, check out our latest quantum computing news here.

The Future of Materials Discovery: Reducing R&D Costs significantly with GenMat’s AI and Machine Learning Tools

When: July 13, 2023 at 11:30am

What: GenMat Webinar

Picture of Jake Vikoren

Jake Vikoren

Company Speaker

Picture of Deep Prasad

Deep Prasad

Company Speaker

Picture of Araceli Venegas

Araceli Venegas

Company Speaker

Matt Swayne

With a several-decades long background in journalism and communications, Matt Swayne has worked as a science communicator for an R1 university for more than 12 years, specializing in translating high tech and deep tech for the general audience. He has served as a writer, editor and analyst at The Quantum Insider since its inception. In addition to his service as a science communicator, Matt also develops courses to improve the media and communications skills of scientists and has taught courses. [email protected]

Share this article:

Keep track of everything going on in the Quantum Technology Market.

In one place.

Join Our Newsletter