Cookie Consent by Free Privacy Policy Generator
Search
Close this search box.

Skyrmions Could Offer (Yet Another) Approach to Quantum Computing

Skyrmion
Skyrmion
Researchers say quantum computers may one day be based on a skyrmion approach. Image: C. Psaroudaki and C. Panagopoulos

If you were just thinking that there weren’t enough quantum computing modalities out there, you’re in luck. A team of researchers from the U.S. and Singapore are offering evidence that magnetic skyrmions may offer a tempting new approach to quantum computing.

The team — which includes Christina Psaroudaki at the California Institute of Technology and Christos Panagopoulos at Nanyang Technological University in Singapore — also add that skyrmions may serve as qubits that are stable and scalable.

According to an APS Physics article, skyrmions are vortex-like quasiparticles that form when the local orientation of a magnetic material’s atomic spins deviates from that of the background. These quasiparticles have two key parameters of interest to quantum computer developers: their topological charge — how many times magnetic moments within a skyrmion wrap a sphere– and their helicity — an indication the angle of the spin axes from the crystallographic axis.

In Physical Review Letters, Psaroudaki and Panagopoulos propose to stabilize skyrmions in magnetic nanodisks bounded by electrical contacts. Static electric and magnetic fields can control the quantized energy spectra of the skyrmions. The user can then change the helicity between two energetically favored levels, which act as a qubit’s 0 and 1 states.

These electric and magnetic fields can also be tuned to control the qubits’ lifetimes. Qubits, which are placed in nanodisks, interact with other qubits through nonmagnetic spacers. Sensitive magnetometers can then serve as readouts.

The researchers report:” Scalability, controllability by microwave fields, operation time scales, and readout by nonvolatile techniques converge to make the skyrmion qubit highly attractive as a logical element of a quantum processor.”

Future work will identify materials that have the right magnetic configuration and geometrical frustration to host skyrmion qubits. They expect these new materials to advance with additional investigations into skyrmions.

If you found this article to be informative, you can explore more current quantum news here, exclusives, interviews, and podcasts.

The Future of Materials Discovery: Reducing R&D Costs significantly with GenMat’s AI and Machine Learning Tools

When: July 13, 2023 at 11:30am

What: GenMat Webinar

Picture of Jake Vikoren

Jake Vikoren

Company Speaker

Picture of Deep Prasad

Deep Prasad

Company Speaker

Picture of Araceli Venegas

Araceli Venegas

Company Speaker

Matt Swayne

With a several-decades long background in journalism and communications, Matt Swayne has worked as a science communicator for an R1 university for more than 12 years, specializing in translating high tech and deep tech for the general audience. He has served as a writer, editor and analyst at The Quantum Insider since its inception. In addition to his service as a science communicator, Matt also develops courses to improve the media and communications skills of scientists and has taught courses. [email protected]

Share this article:

Relevant

The Future of Materials Discovery: Reducing R&D Costs significantly with GenMat’s AI and Machine Learning Tools

When: July 13, 2023 at 11:30am

What: GenMat Webinar

Picture of Jake Vikoren

Jake Vikoren

Company Speaker

Picture of Deep Prasad

Deep Prasad

Company Speaker

Picture of Araceli Venegas

Araceli Venegas

Company Speaker

Keep track of everything going on in the Quantum Technology Market.

In one place.

Join Our Newsletter